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A STUDY OF THE USE OF ABSTRACT TYPES FOR THE 
REPRESENTATION OF ENGINEERING UNITS IN 

INTEGRATION AND TEST APPLICATIONS 
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ABSTRACT 

Physical quantities using various units of measurement can 
be well represented in Ada by the use of abstract types. 
Computation involving these quantities (electric potential, 
mass, volume) can also aut-atically invoke the computation and 
checking of some of the “implicitly associable attributes of 
measurements. Quantities can be held internally in SI units, 
transparently to the user, with automatic conversion. Through 
dimensional analysis, the type of the derived quantity resulting 
from a computation is known, thereby allowing dynamic checks of 
the equations used. Through error analysis, the precision with 
which a quantity is measured can be correctly propagated into 
the result of a computation involving that quantity. The output 
of both measured and computed quantities can automatically be 
rounded to the correct significance, and labeled with the 
correct units. 

The impact of the possible implementation of these 
techniques in integration and test applications is discussed. 
The overhead of computing and transporting measurement 
attributes is weighed against the advantages gained by their 
use. The construction of a run-time interpreter using physical 
quantities in equations can be aided by the dynamic equation 
checks provided by dimensional analysis. The overhead of 
responding to measured and computed system variables in real- 
time systems can be decreased in the case where only the 
significant changes in data values are responded to. The 
effects of higher levels of abstraction on the generation and 
maintenance of software used in integration and test 
applications are also discussed. 

INTRODUCTION 

Data abstraction should, in the near future, become the 
most important tool used in the Ada development of replacements 
to current systems functioning in the area of Integration and 
Test (I t T) . This importance stems from the urgent need to 
maintain Test Procedure/ Test System Independence. This 
independence promotes both the reusability of Test Procedures 
and the possibility of modifying physical device information in 
the Test System, at run-time, without affecting procedures using 
logical access methods. This is necessary to decrease turn- 
around time due to modifications of the Test System/ Test 
Article hardware configurations. 
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BRIEF BACKGROUND 

Kennedy Space Center/ Engineering Development/ Digital 
Electronics Engineering Division is in the process of 
prototyping distributed systems supporting I & T applications, 
particularly the Space Station Operations Language (SSOL) 
System, which is the I & T subset of the User Interface Language 
(UIL) for the Space Station. The discussions in this paper were 
developed from the results of systems designed and developed in 
Ada to demonstrate the feasibility of supporting the abstract 
data types used in I & T, specifically, engineering units. The 
Ada environment used was that of VAX Ada under VAX/VMS. 

SYSTEM CONCEPT 

There is a direct correlation between the effectiveness of 
computer systems and the fidelity with which objects in those 
systems simulate the behavior of the external phenomena that 
they are intended to represent. [l] The definition of objects 
is then akin to a simulation effort: complete with objectives 
outlining progress towards simulation goals, and constraints 
which limit the scope of the effort. 

The goal of object definition for measurements and 
quantities used in Integration and Test applications is to 
create objects representing the physical quantities that are 
measured, tracking a magnitude for the quantity, and the type of 
quantity. The quantities (VOLTS, METERS/SECOND, PSI) should 
interact with other quantities in the same way that real 
physical phenomena do: 

V = IR 
PV = nRT 

In other words, arithmetical operations 
quantities correctly into new quantities. 
useful if the creation, input, and output 

should convert the 
Also it would be 

of those quantities 
could be performed using any unit or scaie of measure (length in 
METERS or MICRONS or CUBITS). It would be nice, as well, to know 
the precision with which a measurement was made, so that it can 
be determined if it represents a significant change from the 
last measurement. That precision, or measurement error, should 
propagate correctly during computation as well. 

The objectives which mark progress towards these goals can 
be established. The quantities and units should be easy to 
define and use. The quantities should convert correctly upon 
input in different units. The quantities should convert 
correctly upon computation, and if the resultant quantity is of 
the incorrect type, an exception should be created, because the 
equation is incorrect (or the result type is wrong). Precision 
should be computed correctly for the different arithmetic 
operations. Finally, if the wrong units are selected for input 
or output, an exception should be generated. 

The constraints which confine the scope of the effort can 
be defined. It is important that the support of the 
features of the system should not incur excessive system 
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processing or storage size overhead, because too much time and 
space costs money (space less than time these days). Tne 
resulting packages should not be too complex, relying instead on 
algorithms and structures that are just complex enough to create 
a useful result. Lastly, the development should be constrained 
against passing the point of diminishing returns. If a 
feature is difficult to implement and yields little in tangible 
results, it should be forgone. 

PHYSICAL QUANTITIES 

The tracking and converting of types of quantities is 
simply and efficiently d o h  in computer programs by dimensional 
analysis. [2] This involves some fairly simple physics, f o r  
example, the average acceleration of a body can be computed by 
the equation: 

Average Acceleration (m/s2) = Change 
Time of Change (s) 

which uses the units m = meters and s = seconds. The average 
force applied to the same body can be computed by: 

Average Force (N) = Mass of Body (Kg) 
* Average Acceleration (m/s2) 

which uses the units N = newtons and Kg = kilograms as well as 
meters and seconds. What can be seen from combining the units of 
these equations is the following units equivalency: 

newtons (N) kilograms (Kg) * meters (m) 
seconds squared (s2) 

The units like kilograms, meters and seconds are called base 
units, and the units like newtons are called derived units. 
These are all SI units, standardized by the IS0 Resolution RlOOO 
in 1969, and documented in the Le Systeme Internationale 
de'Unites (BIPM), but conversions exist for all other forms of 

c units as well. If a matrix of derived units versus their base 
units is made, the dimensionality of derived units in their base 
units can be shown (Table F.4.4-1). The newtons unit shows a one 
in the kilograms column, a one in the meters column and a -2 in 
the seconds column, because seconds squared is reciprocal. 

This dimensional analysis can be done for most units in any 
of the systems (English, CGS, etc.). Some units, however, are 
truly dimensionless. An example is the decibel and the Richter 
scale units, which are logarithms of ratios of units which 
cancel out. Some units just do not fit into dimensional 
analysis. AC circuit impedance equations do not cancel nicely, 
for instance, and AC units would probably have to be defined as 
dimensionless for those equations to correctly cancel. This 
simple dimensional analysis, as a whole, probably deals badly 
with sinusoidal phenomena. 
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TABLE F.4.4-1: PARTIAL TABLE OF UNIT DIMENSIONALITY 

For each unit, the dimensionality is given versus each base 
unit from which it is derived (meter, kilogram, second, 
ampere, kelvin, candela & mol), along with the scale and 
offset required (1.0, 0.0 for SI derived units). 

Base Units SI Conversion 

b Derived Units A a K cd mol 

-1 

-2 
1 

1 

newton : N 
hertz : Hz 
jou1e:J 
watt: W 
volt : v 
lumen: lm 
henry:H 
mo1arity:M 
astron. unit:AU 
footpound:ft-lb 
knot: kt 

fahrenheit:OF 
slug 

Scale, Offset 

1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1.0, 0.0 
1000.0, 0.0 
1.4963+11, 0.0 
1.356, 0.0 
0.5144, 0.0 
14.5939, 0.0 

1 

2 
2 
2 

2 
-3 
1 
2 
1 

I 

1 

1 
1 
1 

1 

1 

1 

- 

S 

- 
-2 
-1 
-2 
-3 
-3 

-2 

-2 
-1 

7 

I 1 I I I 0.5556, 255.37 
The advantages of this method of tracking dimensions are 

mostly in verification of physical equations used in I C T 
applications. Even very complex equations involving many factors 
can be analyzed. During addition and subtraction operations, the 
two input quantities and one output quantity must be identical 
dimensionally. During multiplication the dimensions are added, 
and in division they are subtracted. If the result type doesn't 
match the computed dimensionality, it is an error. Dimensions 
can be stored as integers of range -20..20, and the overhead 
involved in integer arithmetic and compares is probably little. 

The disadvantages are that it doesn't deal well with AC 
quantities and the like, which would require a complicated and 
unwieldy solution, yielding few tangible returns. Also, there 
are several correct dimensional solutions, any of which can be 
misapplied to a problem, with no detectable dimensional error 
(series/ parallel DC circuit equations). 

MEASURED PHYSICAL QUANTITIES 

The measurement of physical quantities always incurs a 
measurement error which can be assigned to the measured quantity 
at it's source, as it enters the system. This precision is key 
to any analysis of the significance of the measured quantity. If 
two sequential measurements of the same phenomena are obtained, 
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and their difference is less than the precision by which they 
are measured, then there is no significant difference, and the 
measurement is considered the same, experimentally. The scope of 
use for measurement precision would then be anywhere, in the 
system, after the conversion from raw data (counts) into 
engineering units. It should be noted here, that the measurement 
precision analysis discussed is different from the significant 
change analysis used in the front end processing of raw Counts 
in the Launch Processing System (LPS), which is a digital 
process for raw data concentration to remove line jitter. 

Error propagates (increases) as measurement values are 
combined by physical equations to yield resultant quantities. If 
the precision is an available attribute of the measured 
quantity, then the precision of all computed quantities can 
likewise be computed and carried along with the measurement. The 
computation of propagated error from the mathematical operations 
applied to quantities is shown in Table F.4.4-2. The relative- 
type error, on the right, looks like it will produce many 
occasions of division by zero, and is therefore not useful. The 
absolute-type of error, in the center, looks to produce a divide 
by zero only when the operation is a divide by zero (in error), 
and seems optimal. 

For quantities introduced into the system without a 
measurement, such as constants, the precision input would be 
derived from the number of significant digits (+/- one half of 
the last digit). 

TABLE F.4.4-2: FORMULAE FOR LIMITING ERROR 

For the following mathematical functions: f( x, y ) :  given 
that x and y are the exact values, a and b are 
measured approximations, and the deltas for a and 
their limiting errors. 

their 
b are 

Type Of Bounds For The 
Function Absolute Error 

Bounds For The 
Relative Error 

X + Y  

X-Y 

X * Y  

X/Y 

X” 

DERIVED TYPES SOLUTION 

The simple object-oriented approach to measured quantities 
would be to consider units to be classes of measurements, and to 
make them derived types of a bask record type which would have 
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the components mentioned: measured value and precision, and 
dimensional values. Then the combinations of these types would 
be performed by defining, for example, a multiply function that 
takes inputs of AMPS and OHMS and makes VOLTS. To define the 
legal combinations for just a few types would be laborious, 
there are just too many relationships. The simple approach is 
too complex. 

DISCRIMINANT TYPE SOLUTION 

A solution for the representation of physical quantities 
using discriminant records is pointed to in Hilfinger [ 3 ] .  It is 
not written exactly in Ada, though, for he presents a case for 
possible changes in the language. The record discriminants are 
the dimension values and the units scale factor, which would 
then prevent assignment of dissimilar units of the same 
dimensionality. For example, quantities in meters could not be 
assigned to quantities in feet, although the dimensionality is 
the same. Assignment of dissimilar constrained records is then 
accomplished by the overloading of the assignment operator ":=" I 

with a function that re-scales the internal value to the new 
scale factor, and creates the correct and matching constraint 
values. 

In current Ada, however, only discrete discriminants are 
legal, which disallows units scale factor as a discriminant 
(because it is a real type), and the ":=" operator cannot under 
any circumstances be overloaded. So it doesn't work in standard 
Ada. 

An attempt can be made to standardize that approach, but 
there are some problems without the fixes to Ada. If the scale 
value were kept as a record component, instead of a 
discriminant, it will be modified upon assignment (not a 
constraint anymore). This negates the ability to keep scale in 
the quantity, and the quantity scaled as feet, instead of 
meters . 

If the scale for an engineering unit alone is kept, then 
offset units, such as degrees fahrenheit (not aligned with 
absolute 0 OK) cannot be used. 

There is also unnecessary run-time overhead to re-scaling 
every time a computation is made, and possible rounding error in 
the scale, which may drift. The rounding error in the scale is 
probably the reason why Ada doesn't allow it or any other real 
type to be used as a record discriminant. 

CLOSELY-COUPLED DISCRIMINANT TYPES SOLUTION 

A further redefinition of an object can be accomplished 
with differentiation [l] , when the object definition has become 
too amorphous to simulate the target phenomena. Differentiation 
could be considered a fine structure definition technique for 
systems, whereas Object-Oriented Design or Functional 
Decomposition are gross structure definition techniques. 

A separation of the object definition for physical 
quantities is made, into two closely-coupled objects, QUANT and 
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UNIT. QUANT is the measured quantity, and UNIT is one possible 
engineering unit for a quantity. They have attributes in common, 
the dimensional values. They also have unshared attributes. 

UNIT is a private dimensionally-constrained discriminant 
record which contains the scale and offset for the engineering 
unit it represents, and can have for components other 
engineering unit attributes, such as the text label for output 
functions, or an input prompt text. 

QUANT is a private dimensionally-constrained discriminant 
record which contains the measured value stored in SI units (no 
re-scaling), and can have for components other measurement 
attributes, such as measurement precision or identification of 
source device or process. 

Arithmetic interactions of real types with type QUANT 
should be similar to those between scalars and vectors, only 
multiplication and division being allowed for scaling the QUANT 
values. Arithmetic interactions of real types with type UNIT 
should be similar to those between scalars and unit vectors, and 
therefore a QUANT is the outcome. Any arithmetic interaction cf 
a UNIT with a UNIT or a QUANT should produce a QUANT, converting 
the pure to the impure, so to speak. QUANT objects should 
arithmetically combine to produce QUANT objects, of course. 

With these definitions for the private types and arithmetic 
functions, it is simple to define several QUANT subtypes for the 
physical quantities (LENGTH, MASS, VELOCITY, POTENTIAL, WORK, 
INDUCTANCE, etc.) and to define several UNIT constants (deferred 
constants in the package) for the engineering units (FT, KG, 
KPH, VOLTS, FT-LB, HENRYS, etc.). It should be simple to create 
values for QUANT on the fly: 

PIPE-LENGTH : LENGTH := 5 * FT; 
GAS-CONSTANT : CONSTANT QUANT := 

8.31434 * JOULES / ( DEG-K * MOLS ) ;  

Functions for creating new UNIT constants on the fly will 
be necessary, since they cannot be produced arithmetically or 
defined externally to the package. 1/0 functions for QUANT 
Values will also require a UNIT constant as a parameter, for 
scaling to/from SI units. A function for extracting the value of 
a QUANT object as a real variable, will also require a UNIT 
parameter and a conversion. 

It would be possible, with a private dimensionally- 
constrained discriminant record variant, to create one type by 
lumping both QUANT and UNIT attributes together (one 
discriminant chooses which). This, however, is an 
unsatisfactory technique. With variant objects, the programmer 
always has to check what he has, before he can use it. The 
overhead of such checking is little, but the complication is now 
pushed into the application, instead of being in the package. 
This would seem to be a reversal of the purpose of abstraction. 

Measurement precision could be included as a component in 
the QUANT definition by the use of the absolute precision 
computations listed in Table F.4.4-2. The absolute quantity 
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precision would then be computed into any result, like the 
dimensionality and the measured value itself. 

The offset component of the UNIT type, could be used for 
more than just offset temperature scales (Celsius, fahrenheit) . 
Any differential scale could be represented by an engineering 
unit. In an example, cargo positional coordinates could be 
internally held in a centralized coordinate scheme. Differential 
voltages or pressure readings from sensors could also be related 
to some reference point. 

If the pre-defined UNIT constants were ordered into a 
table, the 1/0 functions could, given a quantity of unknown 
type, select an output label and scaling, or an input prompt. 
This might be particularly useful in the generation of reports 
or ad hoc queries, which would use computation involving 
quantities and creating new quantities on the fly. 

USE OF DISCRIMINANT TYPES IN GENERICS 

Along with the useful constraining features of discriminant 
records, comes the difficulty of matching them with generic 
formal parameters. To instantiate a generic software component 
with a formal parameter matching a discriminant private type, 
the type must be constrained (no unconstrained types in 
generics), and the type of constraint passed as a generic formal 
parameter first. Then the discriminant type is passed, as a 
discriminant generic formal parameter. It is fairly obvious that 
most generic software will be produced, not of this type, but 
using the type private, with accompanying functions of that type 
(as in the generic sort function in most textbooks). 

This problem can be handled, for any unconstrained 
discriminant type (QUANT, UNIT) with constrained subtypes 
(VOLTAGE, POWER), by declaring a non-discriminant record type 
which contains the unconstrained discriminant type. To 
instantiate a generic sort function, the enclosing record type 
would have to be passed to the generic, for the creation of an 
array type (for sorting), and an ordering function gg>88 for the 
enclosing type would also have to be defined and passed. 

This is somewhat of a kludge, in that the constraints do 
not apply within the scope of the generic component. 
Simply put, the discriminant types feature of Ada somewhat 
precludes the use of generic software in a straightforward 
manner 

ANALYSIS OF OVERHEAD FOR USAGE OF OBJECT DEFINITION 

The storage overhead can be estimated on the assumption of 
bytes for dimensional integers and 4-byte floating point 
representation for the measurement itself and for it's 
precision. This gives a 2X storage increase for carrying the 
dimensions and another 1X for the precision, up to 4X for 
everything. In communications, with all of the rest of the 
overhead involved in sending a measurement in a packet, this 
probably is not significant (other measurement information, 
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status, device status, send/receive addresses, transaction ID, 
packet ID, etc.) . 

The computational overhead for the dimensional analysis 
feature, which uses integers, is thought to be small compared to 
the floating point math involved in each multiply and divide 
for the measurement itself. This is thought even though there 
are seven dimensional integers being added for every measurement 
being multiplied (inversely for divides). Measurement adds and 
subtracts simply involve comparing for the dimensions (can't add 
VOLTS to WATTS). 

The computational overhead for the precision feature, if 
absolute error is propagated by a floating point representation, 
is about 1X for adds, subtracts and the power function, 2X for 
multiplies, and 4X for divides. This can be seen in the central 
column of Table F.4.4-2. 

ADVANTAGES OF DIMENSIONAL ANALYSIS FEATURE 

The low computational overhead incurred by this feature is 
more than compensated by the advantages it carries. These are in 
the area of verification, validation, and run-time 
interpretation support. 

During the development of I & T software, the use of 
constrained types to represent quantities should make possible 
the verification by dynamic analysis of that software. Even the 
most complex equations using dimensional variables, can be 
checked for the correct and allowable combination of subtypes, 
and for the return of the correct types of physical quantities. 
However, this will not catch those mistaken computations which 
return the correct quantity type, incorrectly computed. 

The dimensional analysis method, since it is a dynamic 
feature of programs using it, and not a static feature, will 
lend itself well to validation of programs as well. In large I t 
T applications (for example LPS), the binding of logical 
measurement designation to physical device parameters is delayed 
for as long as it is possible. This allows the modification 
of hardware parameters with the minimum impact on the software 
system. The optimum circumstance would involve run-time binding 

configuration could be changed at test-time without having to 
patch the system, as is done now. 

In that desired situation, there will be a large separation 
between the analysis of the logical nature of a program 
(equations) , which would occur during development and 
verification, and the physical validation of the program against 
the model, or components of the Test System. As the distance 
between the verification of the logical and the validation of 
the logical-to-physical widens, the potential for dynamic 
problems to escape unnoticed should increase. If methods for 
logical verification of programs at run-time are used, such as 
dimensional analysis of equations by the method proposed, the 
possibility of catching these dynamic problems increases. 

This problem of run-time dynamic analysis is exacerbated in 
the use of I & T command languages such as the User Interface 

- I of the logical level to the physical, so that the hardware 
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Language (UIL) and it's subset, the Space Station Operations 
Language (SSOL). The commands in these languages are interpreted 
at run-time, and are formulated by the user at the terminal, on- 
orbit. The use of complex equations in these languages to 
perform control functions is proposed. Syntax checking can be 
performed easily by the User Interface, but checks for 
correctness of the physical equations used will require some 
facility, such as dimensional analysis. If dimensional 
analysis were used, the internal checks in the interpreter 
program would be automatic against every statement using 
physical quantities, and exceptions would be generated on a 
statement by statement basis. 

ADVANTAGES OF COMPUTATION OF PRECISION FEATURE 

As the complexity of systems increases, leading up to the 
Space Station era, so does the number of levels of integration 
to be passed through by components before their operational use. 
In some shuttle payloads from ESA, there are already 7 levels of 
integration. If Ada is to become widespread in it's use as the I 
& T language supporting these levels of integration, then the 
Ada software products must be promotable between levels of 
integration. This does not imply a need to run the same 
procedure at a higher level, although that may be a requirement. 
What it does require is that lower level software components be 
incorporated by some method of abstraction into higher level 
components, up through launch operations and on-orbit 
operations. 

At each level of abstraction, component level state, 
control and measurement variables are presented as parameters to 
higher-level integration software, simplifying interfaces at the 
subsystem, and then the system level. This continues until at 
the on-orbit user interface level, simple designators for 
systems are connected to a large tree of state, control and 
measurement variables extending all the way back down the 
integration chain. 

In systems using abstracted measurement variables, knowing 
the significance of measurements at all levels is an important 
issue. Control logic algorithms which attempt to establish set 
points to an insignificant range are erroneous. Commands which 
effect an insignificant change in an effector are meaningless, 
and consume system resources in their performance. Measurements 
which involve insignificant changes in levels should not be 
communicated. 

communication overhead becomes more of an issue, as we 
progress from tightly-coupled shared-memory systems (like LPS), 
to loosely-coupled distributed systems (like GDMS prototypes). 
Distributed systems have failure modes related to communication 
loading (traffic jams), which can be abated somewhat by data 
concentration. 

concentration of data at the very lowest level of 
measurement has, and will probably continue to be performed on 
the raw data by bit-oriented algorithms. After the basic 
measurements have been converted to ei'gineering units, however, 
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there are data concentration possibilities, based on 
significance and propagated significance, that affect 
communications, and the stimulus and response of the system. 

GENERAL ADVANTAGES OF DATA ABSTRACTION APPLY 

The systems supporting the future I t T applications 
described in the last section, will be highly distributed. They 
will contain components from several levels of integration and 
will also need to be programmed at the highest level possible. 
The programs which drive the higher-level system functioning 
should not be bogged down with detailed data analysis. 
Facilities supporting the propagation of information concerning 
the validity of measurements and the validity of algorithms 
concerning those measurements should be basic to the system. 
Complex programs integrating the functioning of a distributed I 
t T system will be inherently more maintainable and reusable if 
kept at highest possible level of data, system and resource 
abstraction. Greater readability and verifiability of software 
components, and greater reliability and ease of validation of 
the system code is then possible. Finally, the design and 
development of the user interface level applications becomes 
easier, the higher the level of abstraction that is achieved for 
the system components and measurements. 
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